Предыдущая Следующая
171
Глава 3
кой частицы — объектов, имеющих резко отличное время, порождает (вследствие перераспределения энергии) рой виртуальных частиц, либо в зоне контакта возникает микролокальное искривление пространства-времени, либо и то, и другое.
Но в любом случае возникшее в зоне контакта возмущение порождает импульс, который распространяется в глубь иновре-
менной среды с неизбежным затуханием своей интенсивности.
В рассмотренном эксперименте мы, практически, имеем дело не с одним электроном, а с системой электронов, взаимодействующих с системой «покоящихся» микрообъектов.
В соответствии с основным уравнением квантовой электродинамики — уравнением Шредингера для системы частиц — каждой системе частиц «отвечает волна, являющаяся наложением волн отдельных частиц».
Вернемся к эксперименту Фейнмана. В той части лабораторной установки, где электроны летят от источника до пластинки с двумя отверстиями, у нас есть один усеченный конус (рис. 3). Внутри конуса, насыщенного электронами, импульсы возмущения от контактов с иновременными частицами взаимно компенсируются, от поверхности же конуса импульсы уходят вовне без компенсации...
Важно, что в этом случае электроны внутри конуса, не испытывая возмущающего импульса, летят как корпускулы (как пули).
Если в пластине открыто одно из двух отверстий, то электроны, пролетевшие через него, образуют новый усеченный конус, в котором электроны также (и по тем же причинам, что и в первом
конусе) будут вести себя, как корпускулы, образуя кривую либо
N либо ы2 О таком результате и поведал нам г-н Фейнман.
Некоторые следствия гипотезы локально-когерентного времени
Иная картина возникает, когда электроны одновременно проходят через два открытых отверстия (рис. 4).
Поток электронов вынужденно распадается на два новых усеченных конуса. Микролокальное искривление пространства-
|
Точечный водоотвод - водоотводные лотки бетонные - Аквасток. |
времени (при взаимодействии иновременных частиц) порождает импульсы, направленные с поверхности этих конусов вовне. В свою очередь, импульсы либо порождают волновые движения частиц между конусами и через них воздействуют на электроны в конусах, либо непосредственно носители импульсов — микрочастицы (виртуальные частицы?) предопределяют колебания подопытных электронов в конусах.
В результате (и в соответствии с нашими допущениями) траектории движения электронов приобретают волновой характер в каждом из двух конусов. Иными словами, наблюдается интерференция со всеми вытекающими последствиями (ы1 + n. * ы22). Электроны теперь ведут себя как волны, что и порождает один из устойчивых парадоксов квантовой механики , смущающий физиков.
Такова природа явления, разумеется, в гипотетической трактовке.
Неожиданным и, как мне представляется, достаточно мощным подтверждением только что высказанной гипотезы являются результаты экспериментов, о которых также рассказывал Фейнман в уже цитированной лекции.
Выдающийся физик рассказывает об опыте с электронами, но с возможностью, при необходимости, освещать поток электронов сильным потоком света (источник света устанавливается за отверстиями). Свет понадобился ученым, чтобы наблюдать Предыдущая Следующая
|