МОЯ ТВОРЧЕСКАЯ ЛАБОРАТОРИЯ

 

Главная 0.Каталог сайта Cлово и Дело! 1.Путеводитель 2.Прелюдия 4.О новом мышлении 5.Универсальный закон Единое Знание 7.Приложения 5.4.1.5.Звездная механика3  
          "Каждая цивилизация в определенном возрасте имеет возможность возвысить, или разрушить себя. Если делается выбор в пользу возвышения, то возникает импульс, позволяющий появиться учениям об утерянных законах сущего".   (Высший разум, ченнелинг).   
                                                                            М.И. Беляев, 2015г,©
Предыдущая Следующая

   Почему информационная и эволюционная паутины так тесно связаны? Потому что киральная полевая структура эволюционных паутин очень похожа на киральную полевую структуру информационных паутин. Главная причина такого сходства в том, что обе паутины могут описываться одними и теми же дифференциальными уравнениями. В следующих параграфах я буду представлять довод (хотя очень неточный), что уравнение (1), описывающее структуру информационной паутины, справедливо и для эволюционной паутины на ранних стадиях ее развития:

   Траектории заряженных частиц внутри эволюционной паутины (взятые как среднее многих заряженных частиц) выравниваются вдоль линий магнитного поля этой же самой паутины:

               j = f (B)                                                                                (4)

   где, jвектор плотности электрического потока. Векторная функция f (B) нелинейна, плотность потока j может быть выражена экстремумами в определенных плотностях магнитного поля В. В таких случаях мы можем ожидать синтропическую ориентацию (направление) заряженных частиц.

   Сейчас, давайте рассмотрим, что происходит, если функция (4) была бы линейной. Несомненно, такое допущение не имеет места в синтропической области параметров (когда плотность поля больше, чем критическая величина – как мы увидим это вскоре). Однако, мы заинтересованы в знании, где находится  источник нелинейности (и синтропического направления). Мы начинаем с наблюдения ранней эволюционной стадии, когда поле В еще слабое (ниже критической величины), но уравнение (4) все еще справедливо. На этой стадии, линейный термин уравнения (4) предписывает:

               j = pB , где р – скалярная константа (снова псевдоскаляр).         (5)

   Когда j вставляется в первое уравнение Максвелла (сейчас, мы также имеем влияние материи и электрические потоки заряженных частиц), мы получаем:

Piramida-26

бильярдные кии для коммерческого использования в клубах

               rot B = εεоμμо • ∂Е/t + μμо В                                            (6)

   Давайте снова допустим, что вибрация гармонична и что векторные поля Е и В коллинеарны (что истинно для простых информационных паутин), тогда мы получаем уже известное уравнение

               rot B = k' • B                                                                    (7)

   подтверждающее  наше допущение о коллинеарности полей Е и В. Если бы два оставшихся допущения тоже были истинными (что функция f линейна и вибрация гармонична), то эволюционная паутина и соответствующая информационная паутина демонстрировали бы одну и ту же пространственно-временную структуру  ЭМ поля ( другим был бы только размер, а именно kk'). Но в синтропической области параметров не могут быть выполнены ни первое, ни второе условия. Функция j = f (B) должна прерываться, чтобы быть линейной выше критической точки, и вибрация больше не гармонична, если прибавляется временно-ориентированная эволюция. (Но она все еще может выражаться суммой гармонических вибраций формы Фурье.)


Предыдущая Следующая




 
rss
Карта